🗒️论文-时间序列
00 分钟
2023-11-19
2024-1-13
type
status
date
slug
summary
tags
category
icon
password
阅读概括
1. reader:读者姓名 2. journal/conference:填写期刊或者会议简称及发表时间,如NeurIPS2023 3. title:文章标题 4. author:文章的一作和通讯 5. paper_url:文章的pdf链接 6. code_url:文章若有开源代码,给出开源代码链接 7. task:文章针对的是什么任务,在这些里面选: 1. Classification(分类) 2. Imputation(补全) 3. Prediction (预测) 4. Anomaly detection(异常检测) 5. Clustering (聚类) 6. Compression(压缩) 7. 其它的注明一下 8. domain:文章涉及的是什么领域 1. General(通用领域) 2. Traffic(交通) 3. Healthcare (健康) 4. Finance (金融) 5. Education (教育) 9. challenge:文章要解决的challenge是什么,总结成几条自然语言句子 10. method:文章的方法是基于什么的,在这些里面选: 1. Transformer-based 2. GNN-based 3. Diffusion model-based 4. GAN-based 5. RNN-based 6. TCN-based 7. AE/VAE-based 8. MLP-based 9. 其它的注明一下 11. intuition:用一两句话总结一下作者做这个工作的出发点,想法是什么 12. setting:文章实验的任务设置是什么 1. Supervised learning 2. Unsupervised learning 3. Semi-supervised learning 4. Self-supervised learning 13. improvements:文章的工作相较于以往的工作提升在哪里 14. dataset:文章在哪些dataset上做了实验
TS相关论文收集仓库:
TSFpaper
ddz16Updated Jan 13, 2024

2023/11/09

notion image
TimesNet (ICLR-2023)

2023/11/28

notion image
notion image
Koopa(NIPS-2023)

2023/12/06

notion image
 
notion image
N-BEATS(ICLR2020)
N-HiTs(AAAI-2023)

2023/12/13

notion image
notion image
SAN(NeurIPS 2023)
RevIN(ICLR 2022)
论文总结
Titile
Journal/Conference
task
method
domain
challenge
ICLR2023
classification
imputation
prediction/forecasting
anomaly detection
CNN/TCN
general
1. Complex Temporal Patterns: The intermixing and overlapping of various changes (such as rising, falling, fluctuating, etc.) in time series add complexity to modeling efforts. 2. Long-term Dependencies: Existing methods like RNNs, TCNs, and Transformers struggle to effectively capture long-term dependencies in time series. 3. Multi-periodicity: Time series often exhibit multi-periodicity, where the interaction of multiple periods further complicates the modeling process.

评论
Loading...